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ABSTRACT
The primary target of this work is human-robot collabora-
tion, especially for service robots in complicated application
scenarios. Three assumptions and four requirements are
identified. State-of-the-art, general-purpose Natural Lan-
guage Processing (NLP), Commonsense Reasoning (in par-
ticular, ASP), and Robotics techniques are integrated in a
layered architecture. The architecture and mechanisms have
been implemented on a service robot, Ke Jia. Instead of
command languages, small limited segments of natural lan-
guages are employed in spoken dialog between Ke Jia and its
users. The information in the dialog is extracted, classified
and transferred into inner representation by Ke Jia’s NLP
mechanism, and further used autonomously in problem-solving
and planning. A series of case study was conducted on
Ke Jia with positive results, verifying its ability of acquiring
knowledge through spoken dialog with users, autonomous
solving problems by virtue of acquired causal knowledge,
and autonomous planning for complex tasks.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Design, Experimentation

Keywords
Human-robot interaction, Cognitive robotics, Modeling nat-
ural language, Knowledge representation

1. INTRODUCTION
Remarkable progress has been made on research into in-

telligent robots, in particular, service robots. Also in recent
years, there has been an increasing interest in integrating
techniques drawn from areas of AI and Robotics, including
vision, navigation, manipulation, machine learning, plan-
ning, reasoning, speech recognition and natural language
processing [17, 4, 15, 16, 2, 3, 6, 7].

One of the most attractive ideas from these efforts is
human-robot collaboration, according to which robots should
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not be taken as tools, but rather as our partners [9]. This
especially applies to service robots. In the most conceivable
application scenarios like offices and homes, humans want
service robots help them do a lot of things, which they pos-
sess complete mental and physical capabilities of doing these
things by themselves. Therefore, humans can help robots in
these situations, especially with their knowledge, so that the
robots can provide humans with better service, especially in
labor work. Since there would be a long period before robots
gain human-like intelligence, human-robot collaboration is
beneficial and even necessary for many real-world applica-
tions in near future, and especially significant for the aging
society.

A necessary condition of and crucial means to human-
robot collaboration is natural and powerful human-robot
communication. This in turn demands powerful ability of
commonsense reasoning and planning, so that the knowledge
acquired can be made use of by the robots autonomously.
Based on the consideration, Ke Jia Project has been launched,
trying to develop high-level cognitive functions of service
robots suitable for human-robot collaboration. This effort
is based on state-of-the-art, general-purpose NLP and com-
monsense reasoning techniques.

Ke Jia robot has been implemented in upgrade versions
and a series of case studies has been carried out. In the
first type of case study, Ke Jia was examined with stan-
dard tests in RoboCup@home league competitions, such as
building a map of an unknown environment, identifying hu-
mans, following an unknown person, etc [14]. In the second
type of case study, the robot was given complex tasks, each
being composed of more than one simpler task, where each
simpler task may consist of multiple atomic actions. The ex-
periments showed that Ke Jia can understand the intercon-
nection between the simpler tasks and make optimal plans
with the atomic actions. In the third type of case study,
Ke Jia was taught some causal knowledge through spoken
human-robot dialog. By virtue of the acquired knowledge,
the robot succeeded in making “careful” plans whose execu-
tion will realize the assigned goals while avoiding unwanted
side-effects. All the experiments show that Ke Jia’s ability
can be substantially raised through human-robot collabora-
tion.

Section 2 explains our motivations for Ke Jia Project in
detail. Section 3 presents the framework and some of its
features. Ke Jia’s main mechanisms, NLP and commonsense
reasoning, and their integration are described in Section 4.
We report on our case studies in Section 5 and give some
conclusions in Section 6.
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2. MOTIVATIONS
We are concerned with application scenarios which con-

form to following three assumptions. The first assumption
is well-accepted in the area for most of applications, while
the second and the third one have not been adopted by all
researchers explicitly. However, we believe all the three hold
for a majority of more complicated real-world applications
and play an important role in the relevant research.

(A1) Common users: Typically, an intelligent service robot
is expected to serve untrained and non-technical users.
As a consequence, the robot should be equipped with
some intuitive, human-oriented user interface, so that
it can be employed by these users without instruc-
tion [17, 8, 2, 3]. A huge amount of efforts have been
made on this “uppermost” requirement and a variety
of techniques for human-robot interaction have been
developed, including spoken language recognition, ges-
ture recognition, facial perception, etc [8], sometimes
integrated with more traditional techniques such as
graphical user interface.

(A2) Human-robot collaboration: In many cases, human users
need to assist the robot on its missions one way or
the other. An example is task learning, where a hu-
man teaches a robot how to perform a specific task
through a combination of spoken commands, obser-
vation and imitation of the human’s performing that
task [16]. More generally, it is proposed that human
users and robot(s) should collaborate to solve prob-
lems, where humans assist robot(s) with cognition and
perception [9]. More explanations are given in Section
1.

(A3) Underspecification: Unlike an industrial robot, the tasks
of a service robot are frequently underspecified, ie,
not predefined completely, because users usually pro-
vide underspecified descriptions about their intentions
(eg, tasks) and the environments are typically unpre-
dictable and dynamic [17, 2, 3]. Of course, one can
choose to develop service robots of which the tasks
are defined completely in advance. But this choice
means that the robots have no sufficient capability
to response/adapt to their unpredictable and dynamic
environments, as well as the users.

Based on these assumptions, we identify four requirements
for Ke Jia Project to meet.

(R1) Ability of acquiring knowledge from users. A straight-
forward way is to utilize human-robot dialog as means
to acquire a variety of knowledge from users or de-
signers, including descriptions about the environment
and the task at hand, even deeper knowledge such as
causation related to the tasks.

(R2) Feasibility of the expression of complex tasks. In more
complicated applications, the robots must be able to
handle complex tasks, not only simple ones. For exam-
ple, “clean the house” is a complex task, while “open
the door” is a simple one. A simple task is not neces-
sarily an easy task for robots.

(R3) Appropriate degrees of autonomy. Although we do
not expect a service robot can do everything by it-
self, some degree of autonomy is required absolutely.

An autonomous robot should be able to make use of
acquired knowledge to solve problems, especially, plan
for complex tasks.

(R4) Real-time inference. A well-known fact in AI and re-
lated areas is that more powerful mechanisms in func-
tions are usually more time-consuming in computa-
tion. Therefore, it is necessary to take into account
this fact when developing more powerful intelligent ser-
vice robots, since real-time processing is demanded for
real-world applications.

An important observation, to our best knowledge, is that
commands recognition has been the dominate RHI technique
in current efforts on intelligent service robots. With this
technique, the number of commands and the format of each
command are fixed beforehand. In human-robot communi-
cation, the robot tries to match each utterance of its users
with a predefined command. Once a command is recognized,
it is executed by the robot through running a course of low-
level commands, which is manually programmed beforehand
or produced by the motion planning module according to the
command. This technique has shown good performance in
many simple applications [3]. For more complicated appli-
cations with the requirements above, however, there are still
many challenges.

For example, how to express complex tasks? There are
two options of specifying complex tasks within the scope
of commands recognition. The first one is to use high-
level commands, one for each complex task. Generally, the
more complicated a task is, the more parameters are con-
tained in the corresponding command. For example, the
command “turn <right>” has just one parameter, while the
command “move the <red> <bottle> from the <table> to
the <teapoy>” has four. Therefore, as there will be more
and more high-level commands with more and more param-
eters, it becomes harder and harder for users to remember
and use these commands. Moreover, given a certain sort of
task, its instances under different contexts where the task
is executed may need different parameters in the task spec-
ification. For example, if there is more than one red bottle
on the table and the user wants to move a particular one
of them, an additional parameter, eg, an attribute which
distinguishes between this bottle and the others, has to be
introduced into the “move” command above. Obviously, it
would be too difficult or even impossible for the designers
to specify beforehand all the necessary parameters of each
high-level command. In these cases, the “high-level com-
mands” proposal makes infeasible demands on both users
and designers, and contradicts Assumption (A1) and (A3).

The other option of employing commands recognition to
express complex tasks is commands combination, where sim-
ple commands, each representing a simple task, are com-
bined to specify a complex task. This way a human user
has to choose and arrange in some appropriate order all the
simple commands for the complex task at hand, so that the
execution of these commands in that order by the robot
will fulfill the task. This means that it is the human users,
not the robot, who are responsible for task planning; there-
fore, the robot has a very limited degree of autonomy. How-
ever, for many complex tasks, humans may only be able to
describe the goal states they want to reach. So the robot
should take charge of task planning, as well as motion plan-
ning, according to Assumption (A1).
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To meet all the requirements under the assumptions, we
proposed an alternative approach based on the state-of-the-
art NLP and common-sense reasoning techniques, integrated
with human-robot dialog and motion planning. The main
ideas are described below.

(1) We take some limited segments of natural language
(LSNLs) as RHI languages. A specific LSNL is formed
with a fixed vocabulary and a simplified syntax, a sub-
set of the syntax of some natural language. With these
LSNLs, service queries, descriptions about the states
of environments, knowledge of the world, instructions
about new tasks and so on can be expressed in similar
ways as in everyday spoken language dialog and teach-
ing at classes. Accordingly, we employ and develop
some NLP techniques for the robot to “understand”
the dialog in these LSNLs.

(2) We introduced Answer Set Programming (ASP) as
knowledge representation and reasoning tool for Ke Jia.
ASP is a logic language with Prolog-like syntax and the
stable model semantics, and thus a non-monotonic rea-
soning mechanism [10]. This feature makes it suitable
for handling underspecification and further supporting
knowledge accumulation and human-robot collabora-
tion through dialog.

(3) We proposed a layered architecture (Figure 1) to in-
tegrate all the techniques and separate the task and
motion planning. This is crucial for reducing computa-
tional costs, since current ASP solvers are not efficient
enough for motion planning.

Figure 1: The layered architecture

3. FRAMEWORK AND FEATURES
System Overview. The hardware framework of Ke Jia

robot is shown in Fig. 2. Its sensors include a laser range
finder, a stereo camera and a set of sonars. The robot has
an arm for manipulating portable items. The computa-
tional resources consist of a laptop and a on-board PC. It
is worthwhile emphasizing that neither additional computa-
tional resources off-board nor remote control is needed for
the robot when it performs its tasks. This means all the
computation is carried out on-board. Similar to RHINO [3]
and STAIR [15], distributed and asynchronous processing
are adopted, with no centralized clock or a centralized com-
munication module in Ke Jia’s system.

The software architecture is shown in Fig. 1. Ke Jia is
driven by input from human-robot dialog. The information
from the dialog is extracted, classified and transferred into
the task planning module through a three-steps procedure

Figure 2: The hardware framework of Ke Jia

of the NLP module. Within the task planning module, the
information and knowledge are represented as an ASP pro-
gram, which may vary from time to time along with the new
information from the dialog and the observation. However,
there are some “planning states” where the ASP program
keeps no change and represents a certain task as well as
the related knowledge. Then Ke Jia’s task planning mod-
ule generates an optimal high-level plan for the task, and
feeds it to the motion planning module. A low-level plan
corresponding to each high-level plan will be generated by
the motion planning module and executed by the robot con-
trol module.When needed, however, Ke Jia will ask the user
for further information and re-plan. As mentioned above,
we use LSNLs in the spoken human-robot dialog and thus
there are some challenges. Since all the LSNLs we have used
are very small, so far there is no substantial obstacle to the
effort on our main goals.

Task Planning. There are no well-accepted criteria for
the division of task and motion planning and thus the di-
vision depends on designing choices. Some of atomic tasks
we defined in Ke Jia Project are listed in Table 1. Each
atomic task, also called an action, is designed as a primitive
for Ke Jia’s task planning and can be handled further by
Ke Jia’s motion planning. With the specification of atomic
tasks, the division between the task and motion planning of
Ke Jia is clearly defined.

An outstanding feature of Ke Jia’s actions is underspec-
ifiedness, which supports flexibility of representation and
communication. In fact, for example, all phrases seman-
tically equivalent to “pick-up an item” in the given LSNL
are identified by Ke Jia as instances of this action, although
most of the phrases may not specify the action completely
so that it can be executed by a robot. Generally, people can-
not afford to explicitly spell out every detail of every course
of action in every conceivable situation [17]. Suppose, for
example, there exist two bottles on the table and a user just
wants to get a particular one from them. In this case, the
user may express his/her query through a phrase like “bring
me the bottle on the table”. If Ke Jia finds two bottles
on the table during its execution of this task, say, when it
drives by the table, it will ask the user to provide further
information. There are lots of more complicated phenom-
ena of underspecification about objects and their attributes
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action function
goto a location drive to the assigned location from the current location
pick-up an item pick-up the assigned item, return “importable” if the item is not portable
put-down at a position put down the item in hand at the assigned position
search for an object search for the assigned object through sensors and return the position of the object if succeed

Table 1: Atomic actions

which can be resolved with AI technology.
To realize these features, it is assumed by default in Ke Jia’s

NLP and task planning module that any singular noun rep-
resents a single object. This way, Ke Jia’s task planning
module can plan under underspecification, generating (un-
derspecified) high-level plans and providing Ke Jia with the
possibilities of acquiring more (detailed) information if nec-
essary. Once new information reducing uncertainties is re-
ceived, Ke Jia updates its world model and re-plans if needed.
For this purpose, non-monotonic inference is necessary. This
is one of the main reasons that Ke Jia employs ASP as its
inference tool.

Motion Planning and Robot Control. A set of el-
ementary actions are defined for Ke Jia’s motion planning.
Each elementary action is pre-defined with a fixed set of
parameters, similar to a command in command recognition
in some aspects. Unlike commands, however, elementary
actions are determined by the capabilities of a robot’s hard-
ware to a great extent. An elementary action is full-specified
in the sense that if only the values of parameters of an ele-
mentary action are assigned, the robot control module will
execute the elementary action “blindly”. For instance, once
the robot gets the position information of the bottle while
performing the elementary action “catch the bottle”, it will
try to catch the object in that position, no matter what
object it is. In fact, it is not the “responsibility” of robot
control module and/or elementary actions to identify the
“right” objects for acting.

For each atomic action in a high-level plan generated by
Ke Jia’s task planning module, the motion planning module
will try to make a low-level plan composed of elementary ac-
tions, and execute the low-level plan autonomously. This is
a special form of hierarchical planning introduced in Ke Jia
for gaining its computational efficiency. Currently, we em-
ploy heuristic methods for Ke Jia’s motion planning due to
the same reason.

World Model. Logically, the set of objects for Ke Jia’s
planning is determined by the specific LSNL, containing all
the individuals expressible with noun phrases of the LSNL.
However, most of these individuals may not exist in the en-
vironment. On the contrary, only those objects actually
perceived by the robot constitute the domain of objects.
Moreover, the robot may perceive more objects in the en-
vironment during the execution of a task. In order to cap-
ture the changing domain of actual objects and other “real”
attributes of the environment, Ke Jia maintains a world
model (as a part of domain KB), which is shared by the
NLP, task planning and motion planning module and can
be updated with new information from the human-robot di-
alog and/or observation. These modules coordinate their
behaviors through the shared knowledge and information.
Therefore, when Ke Jia acquires new information that there
are two bottles, one red and one green, on the table, it will
update its world model and ask the user to indicate which

bottle he/she wants to get.

4. COUPLING NLP WITH ASP
This section describes the NLP and ASP based common-

sense reasoning techniques employed by or developed for
Ke Jia. Generally, these two techniques are studied or ap-
plied separately. We coupled them in Ke Jia system.

For each input sentence, the NLP module works in three
steps: (1) Parsing, in which input sentence is parsed with
the Stanford parser [12]; (2) Semantic analysis, in which la-
beled logic predicates are generated to represent the mean-
ing of the input sentence; (3) Pragmatic analysis, in which
the NLP module detects the linguistic function of the in-
put sentence and rewrites the labeled logic predicates into
unlabeled ones, so that they are recognizable by ASP.

A single input of the NLP module from the human-robot
dialog module is a string of words, which is regarded as a
sentence. It is parsed by the Stanford parser, which returns
two kinds of information on the syntactic structure of the
sentence: a grammar tree after the UPenn tagging style,
and a set of typed dependencies between all the words in
the sentence [5].

The building of semantic representation is mainly based
on typed dependencies, though sometimes the syntactic cat-
egories of words and phrases are required, too. The semantic
representation is a set of semantic elements. A semantic el-
ement can be either a first order predicate, tagged with a
label, or a variable tagged with a label. The arguments of
first order predicates are labels, so a predicate can be in
the argument list of another predicate. Thus, some second
order information can be expressed in first order settings,
such as “a verb predicate is modified by an adverb predi-
cate”. This approach follows Segmented Discourse Repre-
sentation Theory(SDRT) [1]. Each word corresponds with
a semantic element, and each entity in the semantic space
has its own semantic element, too. Semantic elements are
divided into five types: modifier, entity, verb, preposition
and conjunction.

Modifier elements are used to represent nouns, pronouns,
adjectives, adverbs and all words that behave as an NP by
itself. They are either standalone or not standalone. A
standalone modifier element always carries its own entity el-
ement. Usually, they are derived from nouns or pronouns.
A non-standalone modifier element must have a label from
somewhere else to be filled in its argument list. Each modi-
fier element has only one argument. Entity elements do not
correspond to any word in the text. They do not have any
arguments, and would not be finally printed as predicates,
but as variables. Verb elements corresponds to verbs, and
have 1-3 arguments to represent its subject, direct object
and indirect object, if there are any; preposition elements
corresponds to prepositions, and have exactly 2 arguments,
represent its subject and object, respectively; conjunction
elements correspond to conjunction words, and can have 2
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or more arguments, representing all its conjuncts.
Each type of semantic elements has different properties

and behaviors. With these definitions, we can deal with all
natural language grammatical phenomena that are specified
by the typed dependencies. The typed dependencies specify
the relations between the words in a sentence. Because each
word corresponds to a semantic element, so the relations
between semantic elements are also specified by the typed
dependencies. According to these relation specifications, the
arguments of each semantic element can be determined.

For example, in an amod (adjective modifier) dependency,
the dependent word modifies the governor word, and the two
words are both modifier elements. For every amod depen-
dency, its dependent element and governor element should
have same subject. Thus we can assign the subject argu-
ment of the governor element to the subject argument of
the dependent element. For each dependency, we have de-
fined how to fill the unfilled argument list according to the
type of the dependency. When all the typed dependencies
of the sentence are dealt with, each semantic element will
correctly represent the entities, properties of the entities and
relations among the entities specified by the sentence. Thus
the meaning of the sentence is captured in logical forms.

Now pragmatic analysis is launched to transform the above
logical forms into ASP programs. When a prepositional
phrase modifies a verb, it should be combined with the verb,
producing a composite predicate, and eliminate any refer-
ence to another predicate from the argument list of a pred-
icate, so that the result is purely of first order. In addition,
there are more subtle issues related to the words correspond-
ing to so-called logic connectives. We will return to these
issues after a brief introduction of ASP.

ASP is proposed in [10]. An ASP program is a finite set
of rules of the form:

H ← p1, . . . , pk, not q1, . . . not qm, (1)

where pi, 1 ≤ i ≤ k, and qj , 1 ≤ j ≤ m, are literals, and H
is either empty or an literal. A literal is a formula of the
form a or ¬a, where a is an atom. If H is empty, then this
rule is also called a constraint. A rule consisting of only H
is called a fact. There are two kinds of negation in ASP,
the classical negation ¬ and non-classical negation not, ie,
negation as failure. The meaning of not a can be explained as
saying that “a is not derivable from the program”. Similarly,
a constraint ← p1, . . . , pk specifies that p1, . . . , pk cannot be
derived jointly from the program.

Commonsense knowledge can be represented easily with
ASP programs. For example, Ke Jia’s ability of ’catch’
and the corresponding predicates hold and empty can be
expressed as follows:

catch(A, T ) :− not n catch(A, T ), small object(A),

time(T ), T < lasttime.

n catch(A, T ) :− not catch(A, T ), small object(A),

time(T ), T < lasttime.

hold(A, T + 1) :− catch(A, T ), small object(A), time(T ),

T < lasttime.

n catch(A, T ) :− location(A, X, T ), small object(A),

not location(agent, X, T ), number(X), time(T ).

n catch(A, T ) :− not empty(T ), small object(A),

number(X), time(T ).

empty(T + 1) :− empty(T ), not n empty(T + 1),

time(T ), T < lasttime.

n empty(T + 1) :− hold(A, T + 1), small object(A),

time(T ), T < lasttime.

hold(A, T + 1) :− hold(A, T ), small object(A), time(T ),

not n hold(A, T + 1), T < lasttime.

n hold(A, T + 1) :− empty(T + 1), small object(A),

time(T ), T < lasttime.

The first two rules state that, at any time T , either catch(A, T )
or ¬catch(A, T ) hold, but not both because of the classi-
cal negation (¬catch(A; T ) is written as n catch(A; T ) in
above program). The third rule states the effect of the ac-
tion catch, if the robot catches an object at time T , then
she holds the object at time T +1. The next two rules state
the inexecutable conditions for catch, if the robot is not at
the same position with the object or the hand of the robot is
not empty, then she cannot catch the object. The last four
rules are inertia rules for predicates hold and empty, which
concern the frame problem.

Now return to the last step of the NLP module, prag-
matic analysis. So far in Ke Jia Project, we have consid-
ered two words corresponding to two most important logic
connectives, “if” and “not”. The word “if” has more “pow-
erful” functions than a mere predicate. It can function as
a variety of entailment, such as logical implication, counter-
factual conditional or causal entailment. Since our concerns
(human-robot interaction and collaboration, robot planning,
etc) are mainly related to commonsense reasoning and causal
entailment, we rewrite conditionals (sentences of the form
“if-then”) to ASP rules. This implies that any conditional
in our LSNLs is understood by Ke Jia as a default. Simi-
larly, word “not” is also understood as a commonsense term.
There are three cases where “not” is permitted to appear in
current LSNL sentences. (i) “not” is used to form a negative,
imperative sentence, such as “do not open the door”. The
whole sentence expresses that something is forbidden and
thus should be translated naturally into an ASP constraint.
(ii) “not” modifies the main verb of a sentence or clause.
These sentences or clauses should be handled similarly to a
negative, imperative sentence as above. In particular, neg-
ative if-clauses are understood as defeasible conditions and
thus rewritten as ASP rules. (iii) “not” modifies “anything”,
representing “nothing”. The sentence or clause should be
translated into an ASP rule too. In all the cases, word “not”
is translated naturally or approximately into the negation-
as-failure operator, not. Most of other usages of “not”, say,
modifying nouns or adjectives, should be translated into
classical negation. We have not handled these cases in Ke Jia
Project, since more work is needed to support the implemen-
tation. After the whole procedure of Ke Jia’s NLP module,
all the sentences from the LSNLs can transformed into ASP
programs, so that the information and knowledge expressed
in these sentences can be utilized by the task planning mod-
ule.

ASP provides a unified mechanism of handling common-
sense reasoning and planning with a solution to the frame
problem. A lot of ASP solvers have been developed too. One
can solve an ASP program by running it on an ASP solver.
The outcomes are called answer sets, each containing a set
of literals which can be derived jointly from the program,
or intuitively, hold jointly under the program as a KB. In
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particular, an answer set is actually a plan if the program
specifies a planning problem. For instance, the rules listed
above come from a program specifying a planning problem.
For sake of efficiency, we actually employed more advanced
forms of ASP, say action languages C+ [11], to represent the
knowledge and specify the planning problems of Ke Jia.

5. CASE STUDY
We have conducted several types of case study in the ef-

forts on Ke Jia Project. In Case Study 1, we took stan-
dard tests in RoboCup@home league competitions as bench-
marks, including building a map of an unknown environ-
ment, identifying humans, following an unknown person through
a dynamical environment, etc [14]. The aim of this case
study is to verify Ke Jia’s “basic capabilities”. Actually,
however, it is not necessary for a service robot to pass these
tests by using the main technical contributions described in
this paper. Therefore, we will not present this type of case
study here. But we believe that the techniques reported in
this paper will be significant or even necessary for some new
tests or new versions of the current tests in the future. In
this section, we will describe the second and third type of
case study, where we took complex tasks and causal reason-
ing tasks as benchmark, respectively.

5.1 Case Study 2: Complex Tasks
A complex task is composed of more than one simple task.

The more powerful the ability of task planning of a robot is,
the better performance for complex tasks the robot will have.
Without this ability, some complex tasks such as “clean the
house” cannot be realized by the robot. In simpler cases,
the robot with poor task planning ability cannot carry out
complex tasks optimally.

Figure 3: The initial and the goal state of the com-
plex task

Figure 4: Perform two component tasks separately

The complex tasks we chose in this case study are service
queries of following form: “move a from position B to C
and move b from D to E”, given the initial state is shown
in Fig. 3, where the robot is at location A and portable

Figure 5: Perform the complex task optimally

objects a and b are in position B and D, respectively. Note
that the two component tasks, “move a from position B
to C”and“move b from D to E”, are not even Ke Jia’s atomic
actions. This increases the complexity of the complex task.

As a comparison, consider how this kind of tasks will be
fulfilled by a service robot that employs commands recogni-
tion/combination technique, provided that it can complete
it anyway. Since such a robot only uses command lan-
guage in HRI, we assume that the two component tasks
be instances of a command, “move x from y to z”. Ob-
viously, by using commands recognition/combination tech-
nique, these two commands will be performed successively
and separately, as shown in Figure 4. Generally this is not
an optimal solution to the panning problem.

Ke Jia takes the user request as a single complex task and
makes a plan interleaving the execution of the two compo-
nent tasks this way: goto(B), pickup(a), goto(D), pickup(b),
goto(C), putdown(a), goto(E), putdown(b), as shown in Fig-
ure 5. This plan is optimal with respect to the cost of
Ke Jia’s atomic actions, which comprises the distances be-
tween the locations/positions. So this is a most efficient solu-
tion to the panning problem. More importantly, it is worth-
while pointing out that this plan was made autonomously
and completely with the framework and mechanisms de-
scribed in Section 3 and 4. No matter whatever the loca-
tions/positions are chosen in the environment, Ke Jia is al-
ways able to generate an optimal plan for this complex task.
This also means that Ke Jia can understand the intercon-
nection among the atomic tasks contained in the complex
task through its NLP mechanism. These features benefit
from Ke Jia’s general-purpose mechanism of natural lan-
guage understanding and commonsense reasoning.

In the experiments, Ke Jia was given the task in more nat-
ural forms, such as an English sentence within the LSNL like
“give me the green bottle and put the red bottle on the ta-
ble.” The experimental environment is a simplified home en-
vironment1. The real-time performance for completing this
complex task is also acceptable. Generally, it took about 0.8
second for Ke Jia to accomplish the task panning. The com-
putation of other modules is less time-consuming.

In the experiments, we also tested Ke Jia’s ability of ac-
quiring simple knowledge from users through spoken dialog,
in order to reduce uncertainty about the task at hand due to
the underspecifiedness of task description. At the beginning
of the above task, Ke Jia did not know the position of the
bottles and asked the user to provide relevant information,
although it could find them with its search function. Once
the user had answered the questions, Ke Jia fulfilled the task

1We made two demos for this case study, see
http://wrighteagle.org/media/task_comp_090627.mpg
and http://wrighteagle.org/media/complex_090910.mpg.
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successfully. This result shows that Ke Jia can understand
and make use of users’ description about the environment,
such as “the green bottle is on the teapoy.”

5.2 Case Study 3: Causal Reasoning
We tried to test and verify Ke Jia’s ability of handling

more complicated and difficult problems. One sort of prob-
lems we chose involves causal reasoning. It is well-known
that the capability of reasoning with causation is very im-
portant and even crucial for many real-world applications
and there has been a lot of theoretical research on causal rea-
soning. However, though there is work on training robots,
eg, teaching a robot how to perform a specific task through
a combination of spoken commands and observation [16],
there is no work on complementary ways to robot training,
eg, teaching robots causal knowledge only through spoken
dialog so that the robot gains better capability immediately.
This case study aims at both goals at the same time.

Figure 6: Setting of Case Study 3

The causal reasoning problem we used in this case study
is related to commonsense knowledge about “balance” and
“fall”. A testing instance is shown in Figure 6. There is a
board putting on the edge of a table, with one end sticking-
out. A red bottle is put on the sticking-out end of the board,
and a green bottle is on the other end. If the green bottle was
moved while the red one was on the sticking-out end of the
board, the red bottle would drop to the ground. The task is
to pick up the green bottle under a default presupposition of
avoiding anything falling. To accomplish the task, one must
take some measure first against the unwanted side-effect of
action “catch the green bottle”.

Obviously, causal reasoning is needed for making an ap-
propriate plan for the task. Moreover, currently no robots
could extract the causal knowledge from observation on the
setting, and thus acquiring the relevant knowledge is neces-
sary. One of ways we have been trying is to teach Ke Jia the
causal knowledge through spoken human-robot dialog. This
task is more complicated and difficult than the complex task
tested in Case Study 2, in the sense that causal knowledge is
deeper than the phenomenal descriptions of environments.

We tried two ways in Case Study 3. (1) The first one is
to input into Ke Jia some causal knowledge which is man-
ually programmed in ASP rules, and provide some facts
needed for making use of the causal knowledge. Only four
rules are needed for the specification of a relatively sim-
ple notion of “balance” and “fall” (see Fig. 7). The lit-
eral holds(falling(A), t), where holds is a meta-predicate,
means that the proposition that object A falls at time point t
holds. Intuitively, the first rule states that a long-shape ob-
ject will keep balance if there is something on each end of it.

The second one states that one end that is not sticking-out
is steady. The third and fourth one state that any items on
the sticking-out end would fall if there was nothing on the
other, steady end.

Using the build-in causal knowledge, Ke Jia accomplished
the task with some factual information about the task envi-
ronment. Ke Jia got the additional information through
spoken dialog with the user, where it was told that the
red bottle is on the sticking-out end of the board and the
green one is on the other end2. Ke Jia produced a plan
in which the red bottle is moved to a safety place first and
then the green bottle is caught. The inference for generating
the plan costs no more than 0.5 second in the experiments.
The results demonstrate that Ke Jia can make use of build-
in causal knowledge to accomplish causal reasoning easily.
This also implies a possibility of inputting into service robots
commonsense knowledge from large-scale knowledge systems
such as Cyc [13].

(2) The second way of equipping Ke Jia with causal knowl-
edge is to teach causal knowledge directly through spoken
human-robot dialog, instead of inputting manually programmed
ASP rules. For sake of simplicity, we taught Ke Jia simpler
causal knowledge about “fall”, where deeper causal knowl-
edge about “balance” hides behind. Although the causal
knowledge taught this way is simpler, this second way of
Case Study 3 provides stronger and clearer evidence about
Ke Jia’s ability of natural language understanding and causal
reasoning.

In the experiments, we took a version of Ke Jia without
any build-in knowledge about “balance”, “fall”, or any other
equivalents. Ke Jia was told in the dialog that an object will
fall if it is on the sticking-out end of a board and there is
nothing on the other end of the board. With its NLP mech-
anism, Ke Jia extracted the knowledge and transformed it
into ASP rule

holds(falling(A), t) ← sticking out(D), holds(on(A, D), t),

endof(D, B), board(B), endof(E, B),

not holds(on(C, E), t).

Then the ASP program specifying the task at hand was up-
dated by adding this rule into it. Ke Jia was also told that
the red bottle was on the sticking-out end of the board and
the green one was on the other end of the board. Pieces of
the factual information were also extracted and transformed
into the ASP program. With the knowledge and informa-
tion, Ke Jia accomplished the task with the same plan: mov-
ing the red bottle first and them catching the green bottle.It
is worthwhile emphasizing the fact that Ke Jia could not
accomplish the task without the causal knowledge acquired
through the dialog. This indicates that Ke Jia’s ability is
substantially raised by knowledge acquisition through dialog.

For both ways of Case Study 3, using build-in knowledge
and taught by humans, it took no more than 0.5 second for
Ke Jia to generate the plan.

6. CONCLUSIONS
The primary goal of Ke Jia Project is to establish mecha-

nisms on a unified framework suitable for human-robot col-
laboration for service robots. We take human-robot col-
laboration as an assumption, rather than as just a require-

2See the demo at http://wrighteagle.org/en/demo.
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holds(balance(B, A, C), 0) ← holds(on(A, E1), 0), holds(on(C, E2), 0), endof(E1, B), endof(E2, B).

holds(steady(A), 0) ← holds(on(A, E), 0), not sticking out(E).

holds(falling(A), t) ← holds(on(A, B), t), holds(balance(B, A, C), t − 1), not holds(on(C, B), t), not holds(steady(A), t).

holds(falling(C), t) ← holds(on(C, B), t), holds(balance(B, A, C), t − 1), not holds(on(A, B), t), not holds(steady(C), t).

Figure 7: Rules for “balance” and “fall”

ment. Two more assumptions, common users and under-
specification, are adopted and accordingly four requirements
are identified for Ke Jia robot to meet. We employ state-
of-the-art NLP and commonsense reasoning techniques as
basic mechanisms for human-robot communication and task
planning. A series of case studies was conducted with pos-
itive results, verifying Ke Jia’s ability of acquiring knowl-
edge through spoken dialog with users, autonomous solving
problems by virtue of acquired causal knowledge, and au-
tonomous planning for complex tasks.

To a great extent, in this paper we could only report on re-
sults we have gotten so far in Ke Jia Project. Actually, there
are a lot of challenges in the efforts, most of which are still
under investigation. For example, computational efficiency
of task planning has been a crucial issue, although we suc-
ceeded in making Ke Jia’s computation faster and faster.
However, we are optimistic about this issue, since there has
been an increasing interest in developing more and more effi-
cient ASP solvers, which will provide us with an“additional”
source to attack the problem. It is the case for issues in NLP.
A challenge particular to us is in the coupling of NLP and
ASP, ie, establishing a general-purpose mechanism of trans-
forming limited segments of natural languages into action
languages. We believe that Ke Jia Project will benefit from
all the challenges.
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